Pandas Commands
In this page i will list down the commands I learn to used with Pandas. Newer will be at top, the code is as a sample and not to cover all cases.
If you want to add some commands here just comment it below and i will add it.
:: Pandas Lessons Post ::
Lesson 1 | Lesson 2 | Lesson 3 | Lesson 4 |
Lesson 5 | Lesson 6 | Lesson 7 | Lesson 8 |
Lesson 9 | Lesson 10 | Lesson 11 | Lesson 12 |
if ‘cage_no’ in df.columns: hide_cage = df.drop([‘cage_no’], axis=1) print(‘\n\n’,hide_cage.sample(6)) else: print(‘Column not found’)Output:L4: If a column in df action… |
print(‘\n\n Drop column “supervisor” form the df’) print(df.drop([‘supervisor’],axis=1))Output:L4: Drop column from the df. To grop more columns add them to drop([‘c1′,’c2′,’cx’] |
animal_cage_years=df[[‘animal’,’cage_no’,’years’]] print(‘\n\n Show selected Columns from df\n’,animal_cage_years.sample(6))Output:L4: To show only three columns of df. |
hide_supervisor=df.drop([‘supervisor’], axis=1) print(‘\n\n Sample data after hiding supervisor column\n’,hide_supervisors.sample(6))Output:L4: Function to hide a column from df. |
age_biger_7 = df[‘years’] > 7df.where(mark_supervision & age_biger_7, inplace =True)print(‘\n Only rows under mark supervision and animal age > 7\n’,df)Output: Only showing data of animals under mark supervision and age >7. |
mark_supervision = df[‘supervisor’] == ‘mark’ df.where(mark_supervision, inplace=True)print(\n Only rows under mark supervision)Output: df will show only rows under mark supervision other rows will be as NaN. |
df.sort_values(‘supervisor’, inplace=True)print(‘\n Sorted data by supervisor’)Output: Sorted dataframe |
all_exclude_lion_elephant = df.loc[(df.animal !=’lion’) & (df.animal !=’elephant’)]print(‘\n\n Data without lion and elephant\n’)Output:Printout: All dataframe without lion and elephants rows. |
lion_elephant = dataf.loc[(dataf.animal==’lino’) | (dataf.animal==’elephant’)]print(lion_elephant) Output:PrintOut: all the rows for lino and elephants. |
lion_rows=dataf.loc[(dataf.animal==’lion’)] print(lion_rows) Output:Print out all recodes with animal ‘lion’ |
age_less_6 = dataf.loc[(dataf.years < 6)] print(age_less_6) Output:Print out all the data that animal age is less than 6. |
print(dataf.sample(4)) Output: print out 4 random rows of data, if we left the brackets emput, it will bring one random row. |
print(dataf) Output: print out all the data from the file |
print(dataf.head()) Output: Print out first 5 rows of the data, if we add a number between (x), it will print first x rows. |
print(dataf.tail()) Output: Print last 5 rows of the data, if we add a number between (x), it will print first x rows. |
import pandas as pd file_name=’YourFileName.csv’ dataf=pd.read_csv(YourFileName) Output: We need this part to load the pandas Laibrary, and calling the CSV file, loading all the data in the file to ‘dataf’ |